- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000001010000
- More
- Availability
-
11
- Author / Contributor
- Filter by Author / Creator
-
-
Strassmann, Joan E (2)
-
Walker, Laura M (2)
-
Brock, Debra A (1)
-
Ding, Jijuan (1)
-
Haselkorn, Tamara S (1)
-
Ivaturi, Sindhuri (1)
-
Larsen, Tyler J (1)
-
Liu, Fei (1)
-
Queller, David (1)
-
Queller, David C (1)
-
Sherpa, Rintsen N (1)
-
Shi, Yijing (1)
-
Shu, Longfei (1)
-
Thompson, Christopher (1)
-
Walker, Jason R (1)
-
Wolf, Jason (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
- Filter by Editor
-
-
Kirienko, N (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Chlamydiae represent a diverse group of obligate intracellular bacteria with elusive hosts in environmental settings. This study used one of the largest collections of wild amoebae (Dictyostelium discoideum and D. giganteum, 106 clones) collected over the past two decades to screen for novel environmental chlamydiae. We found that novel environmental chlamydiae are prevalent in two wild Dictyostelium species and assembled 42 novel chlamydiae metagenome-assembled genomes (MAGs). The MAGs represent three chlamydiae species previously only reported using 16S sequencing. Their genomes are divergent enough from other species to warrant placing them in two new genera (tentatively called Ca. Dictychlamydia sp. LF1, Ca. Dictychlamydia sp. LF2, and Ca. Feichlamydia sp. LF3). In addition, these chlamydiae species show strong host specificity with two Dictyostelium amoeba hosts, except one amoeba sample. Ca. Dictychlamydia sp. LF1 and Ca. Feichlamydia sp. LF3 was exclusively observed in D. discoideum, while Ca. Dictychlamydia sp. LF2 was found only in D. giganteum. Phylogenetic and comparative genomic analyses suggest that all three chlamydiae are close to arthropod-associated chlamydiae and likely have some intermediate characteristics between previously reported amoeba-associated and vertebrate-associated chlamydiae. This study significantly broadens our understanding of the chlamydial host range and underscores the role of amoebae as vital hosts for environmental chlamydiae.more » « lessFree, publicly-accessible full text available November 1, 2025
-
Walker, Laura M; Sherpa, Rintsen N; Ivaturi, Sindhuri; Brock, Debra A; Larsen, Tyler J; Walker, Jason R; Strassmann, Joan E; Queller, David C (, G3: Genes, Genomes, Genetics)Kirienko, N (Ed.)Abstract Aggregative multicellularity relies on cooperation among formerly independent cells to form a multicellular body. Previous work with Dictyostelium discoideum showed that experimental evolution under low relatedness profoundly decreased cooperation, as indicated by the loss of fruiting body formation in many clones and an increase of cheaters that contribute proportionally more to spores than to the dead stalk. Using whole-genome sequencing and variant analysis of these lines, we identified 38 single nucleotide polymorphisms in 29 genes. Each gene had 1 variant except for grlG (encoding a G protein-coupled receptor), which had 10 unique SNPs and 5 structural variants. Variants in the 5′ half of grlG—the region encoding the signal peptide and the extracellular binding domain—were significantly associated with the loss of fruiting body formation; the association was not significant in the 3′ half of the gene. These results suggest that the loss of grlG was adaptive under low relatedness and that at least the 5′ half of the gene is important for cooperation and multicellular development. This is surprising given some previous evidence that grlG encodes a folate receptor involved in predation, which occurs only during the single-celled stage. However, non-fruiting mutants showed little increase in a parallel evolution experiment where the multicellular stage was prevented from happening. This shows that non-fruiting mutants are not generally selected by any predation advantage but rather by something—likely cheating—during the multicellular stage.more » « less
An official website of the United States government
